
Introduction to dynamical systems with applications to
biology

Lecture 1

September 26, 2018.

Introduction to dynamical systems with applications to biology



Course Description

This is an introductory course on dynamical systems. Topics include:

A dynamical view of the world.

The importance of nonlinearity.

Solutions of differential equations.

Solving equations on the computer (Matlab).

The phase plane.

Fixed points and stability.

Linear stability analysis.

Classifications of linear systems.

Liapunov functions and nonlinear stability

Cycles and oscillations

Bifurcations and bifurcation diagrams.
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Course Description

Main Lecturer: Prof. Mustafa Khammash, Office 7.00 BSA, Email:
mustafa.khammash@bsse.ethz.ch.

Teaching Assistants:

1 Dr. Maurice Filo, Office 7.24 BSA, Email: maurice.filo@bsse.ethz.ch.

2 Joaquin Gutierrez, Office 1.38 BSA, Email: joaquin.gutierrez@bsse.ethz.ch.

Prerequisites: Multi-variable Calculus; Linear Algebra; Basics of
Ordinary Differential Equations (ODEs); Experience with Matlab.

Grading: Written final Examination (60%) and Homework Assignments
(40%).

Lecture notes will be provided as necessary.

Reference Books:

1 Strogatz, S. H. (2018). Nonlinear dynamics and chaos: with applications to
physics, biology, chemistry, and engineering. CRC Press.

2 Segel, L. A. & Edelstein-Keshet, L. (2013). A Primer in Mathematical Models
in Biology, Vol. 129, SIAM.
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Introduction

Biology is very complex:

Even simple systems contain several interactions. Many interactions are
unknown or unquantifiable.

Dynamics can include many temporal and spatial scales.

Very difficult to model a biological system with all the details.

How can mathematical modeling be useful?

An incremental approach is necessary.

Start with a simple model, add layers of complexity. Einstein famously
remarked:

“Simplify as much as possible - but no more".

Even simple models can reveal a lot if they are designed properly.

The course will teach how to design and analyze biologically meaningful
models.

Mathematics can help in unraveling the complexity in biological systems.
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Introduction

What is a model?

A model is a caricature of the real system under investigation.

A good model captures the essence and leaves out inessential details.

Hence every model is a lie. However

“A good model is a lie that helps us see the truth”.

This course is about modeling biological systems that evolve with time.

Dynamics plays a crucial role in many biological processes.

Many illustrative examples will be provided throughout the course.

Analytical solutions can only be obtained for simple examples.

For more complex models, simulations are necessary to understand the
dynamical behavior.
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Basic Setup

Suppose we want to describe the evolution of a system in discrete-time
0 ” t0 ă t1 ă t2 ă . . . .

Using our model, we specify a function f such that the system can be
described as

xptkq “ xptk´1q ` f pxptkqqptk ´ tk´1q

or as a difference-equation

∆xptkq “ f pxptkqq∆tk

where ∆ak “ pak ´ ak´1q.

Generally we shall work in the continuous-time setting where the system
dynamics shall be described by an ODE:

dx
dt
“ f pxq.

Under reasonable conditions on function f , There exists a unique
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Common Questions

Consider the solution xpt; x0q of the following IVP:

dx
dt
“ f pxq and xp0q “ x0.

What are the invariants of the dynamics?

An invariant is given by a real-valued function G such that for
zptq “ Gpxpt; x0qq we have

dz
dt
“ p∇Gpxpt; x0qq

Tf pxpt; x0qq “ 0.

What is the long-term behavior of the dynamics as t Ñ8?

Does the dynamics settle to a fixed-point? If yes, is the fixed-point unique?

Does the dynamics settle to a periodic orbit? If yes, what is the
frequency/amplitude of the periodic trajectories?

How does the limiting dynamics depend on the initial condition x0?
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Common Questions

Typically a biological model depends on a set of parameters
θ “ pθ1, θ2, . . . q.

These parameters can include reaction rate-constants, temperature,
cell-volume etc.

Suppose for now that θ is a scalar parameter which affects function f (i.e
f pxq ÞÑ f px, θq).

Consider the solution xpt; x0, θq of the following IVP:

dx
dt
“ f px, θq and xp0q “ x0.

How does the long-term behavior depend on parameter θ?

Is there a family of fixed points xeqpθq such that

lim
tÑ8

xpt; x0, θq “ xeqpθq

for each θ?

Does the dynamics display bifurcation? One type of limiting behavior for
θ ă θc and another type of behavior for θ ą θc.
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Solving IVPs in Matlab

How to solve Initial Value Problems (IVP) in MATLAB?

Examples of IVPs: ( 9x :“ dx
dt )

1 Linear:
9x “ ´x ; xp0q “ 5

2 Nonlinear:
9x “ x´ x3 ; xp0q “ ´0.1

3 Second Order:

:x´ 5p1´ x2q 9x` x “ 0 ; xp0q “ 3, 9xp0q “ 1

4 Set of Differential Equations:
#

9x1 “ ´x1 ` x2 ;

9x2 “ ´x2
1 ´ x2 ;

x1p0q “ 2, x2p0q “ ´1

But MATLAB only solves IVPs of the form:

9x “ f pxq; xp0q “ x0.

It can be shown that this form is fairly general and encompasses all the
examples above.
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General Code for Solving IVPs

9x “ f pxq ; xp0q “ x0

Function file:

1 function [<output_args>] = <function_name> (<input_args>)
2 % The code of the function "f" goes here...
3 end

Main script file:

1 % The code of the main file goes here...
2 ...
3 % Calling the differential equation solver "ode45"
4 [t, x] = ode45(@<function_name>, [<Time_Span>], [<Initial_Conditions>]);
5 % Plotting the solution
6 plot(t,x);
7 ...
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Example 1: Linear IVP

9x “ ´θx ; xp0q “ x0,

ˆ

f pxq “ θx, , x P R
˙

Function file (e.g. θ “ ´1):

1 function [fx] = Linear_Function(t,x)
2 theta = ´1;
3 fx = theta*x;
4 end

Main script file (e.g. x0 “ 5):

1 %% Setting the Initial Condition and Time Span
2 x0 = 5; Time_Span = [0, 10];
3

4 %% Solving...
5 [t, x] = ode45(@Linear_Function, Time_Span, x0);
6

7 %% Plotting the Solution
8 plot(t, x);
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Example 2: Nonlinear IVP

9x “ x´ x3 ; xp0q “ x0,

ˆ

f pxq “ x´ x3, , x P R
˙

Function file:

1 function [fx] = Nonlinear_Function(t,x)
2 fx = x ´ x^3;
3 end

Main script file (e.g. x0 “ 0.1):

1 %% Setting the Initial Condition and Time Span
2 x0 = 0.1; Time_Span = [0, 10];
3

4 %% Solving...
5 [t, x] = ode45(@Nonlinear_Function, Time_Span, x0);
6

7 %% Plotting the Solution
8 plot(t, x);
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Observe : limtÑ8 xptq “ ´1, or `1 or 0.

These are called the fixed points of the dynamical system 9x “ x´ x3.

Fixed points can be calculated analytically without a simulation!

Fact: Fixed points of 9x “ f pxq are simply the roots of f pxq “ 0.

In our example: the roots of x´ x3 “ 0 are {-1, +1, 0}.



Example 3: Higher Order IVP

Goal: Solve the following second order IVP using MATLAB

:y´ 5p1´ y2q 9y` y “ 0; yp0q “ 3, 9yp0q “ 1.

Question: How to rewrite it as

9x “ f pxq; xp0q “ x0

Answer: Second order IVP can be transformed to a set of two (coupled)
IVPs of first order.

1 Introduce two state variables: x1 :“ y and x2 :“ 9y.
2 Express 9x1 and 9x2 in terms of x1 and x2:

9x1 “ 9y “ x2
9x2 “ :y “ 5p1´ y2q 9y´ y “ 5p1´ x2

1qx2 ´ x1

3 Rewrite in vector form:

x :“
„

x1

x2



f pxq :“
„

x2

5p1´ x2
1qx2 ´ x1



x0 :“
„

yp0q
9yp0q



ùñ 9x “ f pxq; xp0q “ x0
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

Function file:

1 function [fx] = HO_Function(t,x)
2 fx = [x(2); 5 * (1́ x(1)^2) * x(2) ´ x(1)];
3 end

Main script file:

1 %% Setting the Initial Condition and Time Span
2 x0 = [3;1]; Time_Span = [0, 100];
3

4 %% Solving...
5 [t, x] = ode45(@HO_Function, Time_Span, x0);
6

7 %% Plotting the Solution
8 plot(t, x(:,1)); hold on; plot(t, x(:,2));
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Conclusion

Dynamical systems can exhibit a wide range of phenomena (stable,
unstable, fixed points, periodic oscillations ...)

Dynamical systems might be very sensitive to model parameters and/or
initial conditions.

MATLAB can be used to find (numerically) the evolution of dynamical
systems.

In this course, you will learn how to infer some qualitative and
quantitative features of dynamical systems by inspection (i.e. without
simulations).
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